1. A random sample of 400 hospital admissions from a week's total of 5400 finds 88 were emergency contacts. Give a 98% confidence interval for p = rate of emergency contacts among admissions.

N=5400 N=400 3-BOED CI

m= 36 2. A random sample of 36 elk selected from the Jackon, Wy. Elk Refuge in winter are scored for x = lead exposure finding sample mean $\bar{x} = 27.6$ sample standard deviation s = 11.4It is believed that x scores in this winter herd are (normal distributed.) Give the NORMAL POPSI ENABLES t-80% confidence interval for population mean lead exposure μ . - EVEN FOR M=2! $\overline{x} \pm t \frac{s}{\sqrt{n}}$ (1) BASED CI 1.306 27.6±1.306 11.4 NO FPC NO FOC NOTUSE FPC Conf 80% 35=1-1=36-1 for 95p CI: X + 2.03 % ESTOMARGN OF ERROR OF X

3. What does estimated margin of error of \overline{x} actually estimate?

4. We have obtained estimated standard
errors for rates of cracking of concrete
0.037 for $\hat{p}_{\text{mixes with latex}}$
$0.042 \text{ for } \hat{p}_{\text{mixes without latex}}$
Give the estimated margin of error for /
$\hat{p}_{ ext{latex}}$ $\hat{p}_{ ext{no latex}}$
$1.96 \sqrt{0.037^2 - 0.042^2} = \sqrt{a}$
$\frac{7 \text{ mot}}{}$
EST D STO ERROR OF PLATEX = VPLATEX (1-PLATEX) = .037
ALSO ESTOS. E. OF \hat{p}_{l} - \hat{p}_{Nl} 15 $\left \frac{\hat{R}(l-\hat{p}_{l})}{\hat{R}(l-\hat{p}_{Nl})} + \frac{\hat{R}(l-\hat{p}_{Nl})}{\hat{R}(l-\hat{p}_{Nl})} \right $
THEN FOR ESTO MOE OF ROOT OF SUM OF SQUARES
THEN FOR EST MOT OF ROOT OF SUM OF SQUARES PL-PNL TACKON 1.96

We have obtained estimated standard errors for sample means of concrete hardness

> 0.037 for $\overline{x}_{\text{mixes with latex}}$ 0.042 for $\overline{x}_{\text{mixes without latex}}$

Give the estimated margin of error for

 $\begin{array}{c}
\text{NEFDED} & \overline{x}_{\text{latex}} & \overline{x}_{\text{no latex}} \\
\text{FOR} & & & & & & \\
\end{array}$

 $1.96\sqrt{0.037^2 + 0.042^2}$

X EST OF HARDNESS XNL

ESTUSTO ERROR OF X-7/15 /0.037 70.0422

6. Estimate the mean and sd by eye.

MEAN 13 AT 100

APPEARS 30 = 120-100 gay = 20

7. Amount of genetic material in a given plot is normal distributed with

$$\mu = 9$$
 $\sigma = 3$

Determine the standard score z of a plot with score x = 10.5.

$$3 = \frac{x - n}{5} = \frac{570}{3} = \frac{10.5 - 9}{3} = \frac{1.5}{3} = \frac{5}{3} = \frac{1.5}{3} = \frac{1.5}{$$

Determine the amount x of genetic material of a plot with standard score z = 2.5.

PLOT 41 3=2.5 =
$$\frac{\chi-9}{3}$$

Solve $\chi = \mu+3$ $\sigma = 9+2.5(3)=16.5$

8. What is the **exact chance** that a 95% confidence interval for μ will in fact cover μ if the population is normal distributed and the t-CI is used?

9. Use the z-table to determine P(Z < 2.43).

$$z = 0.03$$
 0.9925

2943

10. Determine the **86th percentile of Z**.

IQ is normal distributed and has mean 100 and sd 15. Determine the **86th percentile** of IQ.

Determine the 86th percentile of Z. Calculate the sample standard deviation s for the list $x = \{0, 0, 4, 8\}$.

$$avg = 12/4 = 3$$

$$S_{\mathcal{X}} = \sqrt{\frac{(0-3)^2 + (0-3)^2 + (4-3)^2 + (8-3)^2}{4-1}} = 3.82971$$

$$s_{4x+} = |4| s_x = 4 (3.82971)$$

12. We've selected random samples of people with or without medication, the score being x = blood pressure decrease over a 5 minute period. Assume large populations

$$\overline{x}_{\text{with med}} = 12.3$$
 $s_{\text{with med}} = 3.2$ $n = 60$ $\overline{x}_{\text{without med}} = 3.7$ $s_{\text{with med}} = 1.2$ $n = 90$

Give the 95% CI for $\mu_{\text{with med}}$ - $\mu_{\text{without med}}$.

$$(12.3 - 3.7) \pm 1.96 \sqrt{\frac{3.2^2}{60} + \frac{1.2^2}{90}}$$